Joint Position Statement: Permanent Deposit of Inert Waste on Land in the South East of England

Draft July 2019 v5.0
This Joint Position Statement has been agreed at officer level by the following members of the South East Waste Planning Advisory Group (SEWPAG):

- Bracknell Forest Council
- Brighton & Hove City Council
- Buckinghamshire County Council
- East Sussex County Council
- Hampshire County Council (incorporating Southampton City, Portsmouth City and New Forest National Park Waste Planning Authorities)
- Isle of Wight Council
- Kent County Council
- Medway Council
- Milton Keynes Council
- Oxfordshire County Council
- Reading Borough Council
- Royal Borough of Windsor and Maidenhead
- Slough Borough Council
- South Downs National Park Authority
- Surrey County Council
- West Berkshire Council
- West Sussex County Council
- Wokingham Borough Council

Both the Environment Agency and the Environmental Services Association have reviewed this document and are party to it under the Duty to Cooperate. They are not included as signatories as they are not Waste Planning Authorities.
Table of Contents

Joint Position Statement: Permanent Deposit of Inert Waste on Land in the South East of England4

1. Introduction..4
2. Background..5
3. Capacity for managing inert waste through permanent deposit to land in the South East of England 15
4. The Issue...23
5. Planning for London’s Excavation Waste...27
6. Best Practice in Planning Policy for Permanent Deposit of Inert Waste on Land............................30
7. Conclusions...30

Appendix A – Controls on activities involving the permanent deposit of inert excavation waste on land 33
Appendix B – Inert landfill Inputs in the South East..39
Appendix C – Inert landfill Capacity in the South East ..45
Appendix D – Examples of criteria based policies...51
Joint Position Statement: Permanent Deposit of Inert Waste on Land in the South East of England

1. Introduction

1.1.1. As will all wastes, the management of inert waste can involve a number of distinct activities but, unlike other wastes, ultimately, one of these activities frequently involves its permanent deposit on land. The permanent deposit of waste on land is often assumed to be a waste disposal activity, however, in many cases, inert waste can be deposited on land in a way that serves a useful purpose and so the term ‘disposal’ may be replaced by ‘recovery’. This Joint Position Statement (JPS) is intended to set out a consistent approach to the planning for the deposit of inert waste on land in the South East. In doing so, the note is intended to clarify how different approaches to the management of this material are controlled through the planning and environmental permitting systems.

1.1.2. While this JPS has been prepared by the Waste Planning Authorities in the south east of England, the correct interpretation of related activity (as a waste activity) is frequently a matter for non waste planning authorities (i.e. district and borough councils) to address. Therefore, separate agreements (or protocols) between individual Waste Planning Authorities and non waste planning authorities within their areas may help ensure that this Joint Position Statement is applied consistently across the South East.

1.1.3. This JPS supports the approach set out in the SEWPAG Memorandum of Understanding (MoU) with regards to planning for the management of waste in the South East and is intended to present joint research and evidence which may be used to support the preparation and implementation of waste planning policies. This statement has been prepared with consideration of national planning policy and Planning Practice Guidance (PPG) and will help the production of future Statements of Common Ground (SoCG(s)) between the authorities in the South East, where they are required.

1.1.4. The JPS includes:

- A joint evidence base, agreed by all SEWPAG member authorities, for use as a starting point for preparing plans and policies by identifying possible future needs for the permanent deposit of inert waste to land in the South East.

- Examples of current policy approaches in adopted Waste Local Plans in the South East of England concerning the permanent deposit of inert waste to land which may also be considered when developing strategies and policies in emerging plans.
1.1.5. SEWPAG is working to prepare an Annual Monitoring Report for the South East and ultimately any data in those reports will supersede the data presented in this JPS and should be referred to.

2. Background

2.1. What is meant by ‘permanent deposit of inert waste’?

Inert waste

2.1.1. Inert waste is defined in the Landfill Directive\(^1\) as “waste that does not undergo any significant physical, chemical or biological transformations”. Generally, in this document inert waste refers to waste derived from construction, demolition and excavation (C, D & E) activities. Inert waste derived from construction and demolition and that derived from excavation can be distinguished as set out below.

2.1.2. Inert waste arising from construction and demolition may include bricks, tiles, ceramics, glass and concrete. Some sorting and separation is generally needed to separate out the inert waste fractions from other non-inert wastes arising from the construction and demolition activity. This separation may take place on the site of production (e.g. separation and crushing of concrete frequently forms part of demolition activity) or takes place at a construction and demolition waste processing facility. The products from these activities include soils and recycled aggregates. There is an ‘end of waste’ quality protocol for recycled aggregate\(^2\) which means that aggregate produced from inert waste to a certain standard is no longer deemed to be a waste and so its transport and management is not subject to controls on waste management.

2.1.3. Excavation waste is defined as “naturally occurring soil, stone, rock and similar materials (whether clean or contaminated), which have been excavated as a result of site preparation activities”\(^3\). Frequently such waste is transported directly from its point of production to its point of management (deposit) without any interim processing.

2.1.4. Inert excavation material can be re-used in such a way that it is not deemed to become a waste i.e. the material is never ‘discarded’ and so does not become waste. This is where the developer knows where the material is going to be used before it is excavated from the

\(^3\) Department of Communities and Local Government Survey of Arisings and Use of Alternatives to Primary Aggregates in England, 2005: Construction, Demolition and Excavation Waste

production site and that it is of a suitable quality and quantity which means it can be used at the receiving site. Management of material in this way is covered by an agreed industry protocol known as “The Definition of Waste: Development Industry Code of Practice” (DoWCoP). As material managed in accordance with DoWCoP does not become a waste it does not need to be planned for by waste planning authorities (See text box), however its use will be subject to planning controls applied by non-waste planning authorities (e.g. district and borough councils).

2.1.1.5. The future management of inert waste needs to be taken account of by waste planning authorities in their Waste Local Plans. This means estimating how much of this waste is currently being produced, how much will be produced in future and drafting policy which covers how, and where, it should be managed in future. Issues arising from the management of inert waste relate more to the quantities in which it produced and less to its chemical composition. In light of its benign nature it is more readily managed in a way that serves a useful purpose.

Permanent deposit

2.1.1.6. The permanent deposit of inert waste on land takes place for a number of reasons including:

- Disposal of that material;
- restoration of mineral voids;
- engineering operations, including:
 - Land improvement/remediation schemes e.g. landraising to improve drainage of agricultural land;
 - landscaping e.g. to create particular landscaping enhancement and/or features;
 - acoustic bunding or bunding to mitigate visual impacts (by hiding) of development;
 - creation of features associated with recreational activities such as on golf courses or at rifle ranges;

2.2. Inert wastes have been extensively used for the restoration of mineral workings. For example an average of approximately 55% of sand and gravel sites are restored to agriculture using inert waste to restore to original ground contours.

Policy Context

4 N.B. In some circumstances naturally occurring contamination may need to be assessed to ensure any deposit does not pose environmental risk to the hydrogeology of the receiver site – for this reason not all materials are benign.

2.2.1 Waste Framework Directive

2.2.1.1 The Waste Framework Directive (2008/98/EC) (as amended), sets requirements for the collection, transport, recovery and disposal of waste. The WFD includes a requirement to apply the ‘waste hierarchy’ when planning for waste management. The waste hierarchy prioritises different ways in which waste can be managed with the most sustainable method, prevention, at the top of hierarchy, and the least, disposal, at the bottom (See Figure 1 below).

![Waste hierarchy diagram]

2.2.1.2 The WFD defines ‘recovery’ as “any operation the principal result of which is waste serving a useful purpose by replacing other materials which would otherwise have been used to fulfil a particular function, or waste being prepared to fulfil that function, in the plant or in the wider economy.”

2.2.1.3 Importantly, the WFD recognises that ‘backfilling’ constitutes a ‘recovery’ rather than a ‘disposal’ activity “where suitable non-hazardous waste is used for purposes of reclamation in excavated areas or for engineering purposes in landscaping. Waste used for backfilling must substitute non-waste materials, be suitable for the aforementioned purposes, and be limited to the amount strictly necessary to achieve those purposes”.

2.2.1.4 The WFD sets the following target for the management of construction, demolition and excavation waste as follows: “by 2020, the preparing for re-use, recycling and other material recovery, including backfilling operations using waste to substitute other materials, of non-hazardous construction and demolition waste excluding naturally occurring material defined in category 17 05 046 in the list of waste shall be increased to a minimum of 70 % by weight.”

6 EWC code 17 05 04 is for ‘other soils and stones’
2.2.15. The WFD also requires waste planning authorities to have regard to the principles of ‘self-sufficiency’ and ‘proximity’. This means that WPAs should provide for the development of sufficient capacity and enable the delivery of such capacity in the right place at the right time.

2.2.2. Landfill Directive (1999/31/EC)

2.2.2.1. The Landfill Directive was introduced in July 1999 and defines landfill as waste disposal sites for the deposit of waste onto or into land. The Landfill Directive sets out requirements for the location, management, engineering, closure and monitoring for landfills. The Landfill Directive also includes requirements relating to the characteristics of the waste to be landfilled and sets out essentially three classes of landfill:

- Hazardous waste landfill,
- Non-hazardous waste landfill, and
- Inert landfill.

2.2.2.2. In accordance with the WFD, the Landfill Directive also states that “Whereas the recovery, in accordance with Directive 75/442/EEC, of inert or non-hazardous waste which is suitable, through their use in redevelopment/restoration and filling-in work, or for construction purposes may not constitute a landfilling activity” (paragraph 15 of the Landfill Directive (1999/31/EC)). This means that backfilling (which may include the backfilling of a mineral void) may not be defined as ‘landfill’.

2.2.3.1. The National Planning Policy Framework (NPPF) sets out Government’s planning policies for England. Although the NPPF does not contain specific waste policies, which are instead contained in the separate National Planning Policy for Waste (NPPW) (see below), WPAs preparing local plans and taking decisions on waste applications should have regard to relevant policies from the NPPF.

2.2.3.2. The NPPF states that “planning policies should ... ensure that worked land is reclaimed at the earliest opportunity, taking account of aviation safety, and that high quality restoration and aftercare of mineral sites takes place”.

2.2.4. National Planning Policy for Waste (2014)

2.2.4.1. The National Planning Policy for Waste (NPPW) sets out the Government’s ambition to work towards a more sustainable and efficient approach to resource use and management, and is intended to help satisfy certain requirements of the WFD (Article 28) for members states to

8 National Planning Policy Framework Paragraph 204

SEWPAG Joint Position Statement: Permanent Deposit of Inert Waste on Land in the South East of England (draft v5.0), May 2019

8
prepare a Waste Management Plan. The NPPW notes that the main responsibility for planning for waste lies with WPAs.

2.2.4.2. The NPPW states that “Positive planning plays a pivotal role in delivering this country’s waste ambitions through ... delivery of sustainable development and resource efficiency, including provision of modern infrastructure, local employment opportunities and wider climate change benefits, by driving waste management up the waste hierarchy”\(^9\).

2.2.4.3. Under the NPPW, when a WPA is determining a planning application it should “ensure that land raising or landfill sites are restored to beneficial after uses at the earliest opportunity and to high environmental standards through the application of appropriate conditions where necessary”\(^10\).

2.2.4.4. This can create a tension between encouraging recycling of inert waste, which the waste hierarchy prefers, and encouraging the early completion of landfill/landraise sites and timely restoration of mineral workings. To a certain extent this is recognised by PPG that states: “The continued movement of waste up the Waste Hierarchy may mean that landfill sites take longer to reach their full capacity, meaning extensions of time limits to exercise planning permissions may be needed in some circumstances”\(^11\).

National Planning Practice Guidance

2.2.4.5. The NPPF and NPPW are supported by the national Planning Practice Guidance (PPG). The PPG sets out a list of matters which can be considered as waste operations, including landfill and land raising sites (such as soils to re-profile golf courses)\(^12\). The PPG states that “WPAs should be aware that the continued provision and availability of waste disposal sites, such as landfill, remain an important part of the network of facilities needed to manage England’s waste”\(^13\).

FOLLOWING TEXT ABOUT DoWCoP TO BE INSERTED IN A TEXT BOX

Management of inert excavation materials under the “The Definition of Waste: Development Industry Code of Practice” (DoWCoP)

The Definition of Waste: Development Industry Code of Practice (‘DoWCoP’) sets out good practice for the development industry to use when assessing whether excavated materials are classified as waste or not. It also allows the determination, on a site specific basis, when

\(^9\) National Planning Policy for Waste Paragraph 1
\(^10\) National Planning Policy for Waste Paragraph 7
\(^12\) National Planning Practice Guidance for Waste Paragraph: 002 Reference ID: 28-002-20141016

SEWPAG Joint Position Statement: Permanent Deposit of Inert Waste on Land in the South East of England (draft v5.0), May 2019
treated excavated waste can cease to be waste for a particular use. Further it describes an auditable system to demonstrate that this Code of Practice has been adhered to.

If materials are dealt with in accordance with this Code of Practice the Environment Agency (EA) considers that those materials are unlikely to be waste if they are used for the purpose of land development. This may be because the materials were never discarded in the first place, or because they have been submitted to a recovery operation which has been completed successfully so that they have ceased to be waste.

Good practice has three basic steps:

1. Ensuring that an adequate Materials Management Plan (MMP) is in place, covering the use of materials on a specific site;

2. Ensuring that the MMP is based on an appropriate risk assessment, that underpins the Remediation Strategy or Design Statement, concluding that the objectives of preventing harm to human health and pollution of the environment will be met if materials are used in the proposed manner; and

3. Ensuring that materials are actually treated and used as set out in the MMP and that this is subsequently demonstrated in a Verification Report.

To confirm that steps 1 and 2 have been taken, a “Qualified Person” reviews the relevant project documents and provides a Declaration to the EA prior to the use or dispatch of materials.

More information is available in the CLAIRE Guidance Bulletin 314.

The amount of waste managed under DoWCoP is illustrated below:

14 https://www.claire.co.uk/projects-and-initiatives/dow-cop/28-framework-and-guidance/112-guidance-bulletin-3-dowcop

SEWPAG Joint Position Statement: Permanent Deposit of Inert Waste on Land in the South East of England (draft v5.0), May 2019
‘Recovery’ or ‘Disposal’

2.2.4.6. Activities which involve the permanent deposit of inert waste to land may be considered to be ‘disposal’ or ‘recovery’ operations and this can depend on whether the activity is being considered from a planning or an environmental permitting perspective. Furthermore, within the context of Environmental Impact Assessment, disposal may include recovery. Clarity is important as policies in Waste Local Plans generally distinguish between disposal and recovery activities.

2.2.4.7. For an activity to be considered ‘recovery’ the main purpose of using the waste materials must be to substitute for non-waste materials (natural resources) which would have been utilised to achieve the development. If the primary purpose of depositing the inert waste is the management of that waste then the activity is classed as disposal.

2.2.4.8. The Defra guide to the Waste Framework Directive\(^{15}\) considers the difference between disposal and recovery operations and states: “The key feature of a recovery operation is that

SEWPAG Joint Position Statement: Permanent Deposit of Inert Waste on Land in the South East of England (draft v5.0), May 2019
its principal objective is to ensure that the waste serves a useful purpose by replacing other substances which would have had to be used for that purpose (thereby conserving natural resources). Further information is contained in Environment Agency Guidance.

2.2.4.9 Recovery operations will therefore involve the ‘beneficial use’ of waste material in such a manner that it substitutes for a non-waste material. Whether the deposit of inert waste to land constitutes a disposal or recovery operation therefore depends on the specific characteristics and true purpose of the development. For example, if it is proposed that inert waste is being recovered by its deposit on land for the purpose of creating a golf course it can be expected that there will be a business plan associated with the development of the golf course that demonstrates that this is a viable proposition and so the activity is a genuine recovery activity. Another example would be the remediation of a degraded historic landfill to a sustainable after-use which brings about a substantial improvement in the quality of the land.

2.2.4.10 Depending on the details of the development, the permanent deposit of inert waste within a mineral void can be considered to be disposal or recovery. If more than the minimum requisite waste material, and/or unsuitable waste material, is used in the restoration of a mineral void then this will be a disposal activity and classed as a landfill. However, where the local plan provides for the backfilling of the mineral void for a specific after-use and the development facilitates the same using the minimum volume of inert waste necessary then it should be deemed to be ‘recovery’. One of the main factors affecting the decision will be the existence of a clear requirement for a certain quantity of material to be deposited within the void. Such a requirement can include a planning condition associated with a mineral working that requires its restoration by increasing the levels within the void. This position was clarified by the ‘Methley’ case. In light of this case, new guidance on the deposition of waste on land as a recovery activity was published by the Environment Agency on GOV.UK on 18 October 2016.

2.2.4.11 Landfill is generally considered to be a disposal activity but it should be noted that the Landfill Directive identifies that the deposit of suitable inert material or waste which is used in redevelopment/restoration and filling-in work, or for construction purposes may not constitute a landfilling activity.

2.2.4.12 It is important to note that developers may seek to avoid activities involving the permanent deposit of inert waste being classed as disposal as such a classification may incur landfill tax.

16 R (Tarmac Aggregates Limited) v The Secretary of State for Environment, Food and Rural Affairs and The Environment Agency [2015] EWCA Civ 1149

17 https://www.gov.uk/guidance/waste-recovery-plans-and-permits

18 The restoration of quarries using inert waste is exempt from Landfill Tax

S E W P A G J o i n t P o s i t i o n S t a t e m e n t : P e r m a n e n t D e p o s i t o f I n e r t W a s t e on L a n d i n t h e S o u t h E a s t o f E n g l a n d (d r a f t v 5 . 0) , M a y 2 0 1 9
Furthermore operational controls associated with an Environment Permit allowing landfill may be tighter than those allowing recovery.

2.2.4.13. Waste Local Plans should be clear about when development involving the permanent deposit of inert waste on land is considered to be disposal and when it will be considered recovery. To avoid confusion between the planning and permitting regimes it is important that the use of the terms, ‘disposal’, ‘recovery’, ‘landfill’ and ‘backfilling’ are consistent with their use in the WFD and Landfill Directive.

2.2.4.14. Activities (regardless of whether they are disposal or recovery) involving the permanent deposit of inert waste on land will likely require planning permission from the Waste Planning Authority\(^\text{19}\). A non-waste development involving material managed under DoWCoP will require planning consent from the Local Planning Authority (which, in a two-tier area, will be the District or Borough Council).

2.2.4.15. The current planning and environment permitting controls on activities involving the permanent deposit of inert waste on land are summarised in Appendix A.

2.3. Demonstrating Joint Working

2.3.1. Localism Act 2011

2.3.1.1. Section 110 of the Localism Act sets out a ‘Duty to Cooperate’ in relation to planning of sustainable development, under which planning authorities are required to engage constructively, actively, and on an ongoing basis in any process where there are cross-boundary issues or impacts. This includes waste management and the preparation of waste local plans.

2.3.2. Meeting the Duty to Cooperate

2.3.2.1. Section 33A(6) of the Planning and Compulsory Purchase Act 2004 requires local planning authorities and other public bodies to consider entering into agreements on joint approaches. There is no definitive list of actions that constitute effective cooperation.

\(^{19}\) The Town and Country Planning (Prescription of County Matters) (England) Regulations 2003 prescribe that, “The (i) use of land, (ii) the carrying out of building, engineering or other operations, (iii) or the erection of plant and machinery used or proposed to be used wholly or mainly for the purposes of recovering, treating, storing, processing, sorting, transferring or depositing of waste; and (b) the use of land or the carrying out of operations for any purpose ancillary to any use or operations specified in (a), including the formation, laying out, construction or alteration of a vehicular access to any public highway, are county matters.”
However, the NPPF notes that in order to demonstrate effective and on-going joint working, strategic policy-making authorities should prepare and maintain one or more statements of common ground, documenting the cross-boundary matters being addresses and progressed in cooperation.

In terms of planning for waste management facilities, the NPPW states that WPAs should “work collaboratively in groups with other waste planning authorities and in two-tier areas with district authorities, through the statutory duty to cooperate, to provide a suitable network of facilities to deliver sustainable waste management”20.

The NPPW also states21 that WPAs should work jointly and collaboratively with each other to collect and share data and information on waste arisings, and take account of:

(i) Waste arisings across neighbouring waste planning authority areas;

(ii) Any waste management requirement identified nationally, including the Government’s latest advice on forecasts of waste arisings and the proportion of waste that can be recycled.

The PPG advises that strategic policy-making authorities “should produce, maintain, and update one or more statement(s) of common ground, throughout the plan-making process”22. Further to this the PPG states that actions which are expected to be documented in a statement of common ground include “producing or commissioning joint research and evidence to address cross-boundary matters”23.

At the examination of Local Plans, plan making authorities will need to submit comprehensive and robust evidence of the efforts made to cooperate and any outcomes achieved. The Inspector will use “all available evidence including statements of common ground, Authority Monitoring Reports, and other submitted evidence ... to determine whether the duty has been satisfied”24.

This JPS assembles information which contributes to (or meets requirements for) the types of documents set out above insofar as they are concerned with the planning for the permanent deposit of inert waste across local authority boundaries in the south east. This JPS is a useful stage in the process of establishing a common baseline prior to building a strategy (or

20 National Planning Policy for Waste Paragraph 3
21 National Planning Policy for Waste Paragraph 2
strategies) agreed between waste planning authorities in the south east (via Statements of Common Ground).

2.4. SEWPAG Memorandum of Understanding

2.4.1. SEWPAG has a Memorandum of Understanding (MoU) to which all SEWPAG members are signatories. The MoU demonstrates how SEWPAG authorities intend to work together and aims to:

- Ensure that planned provision for waste management in the South East of England is coordinated, as far as is possible, whilst recognising that provision by the waste management industry is based on commercial considerations; and
- Ensure that the approach to waste planning throughout the South East is consistent between WPAs, whilst reflecting local circumstances and needs.

2.4.1.2. Under the MoU SEWPAG member authorities agreed to plan for net self-sufficiency (paragraph 7.2). If WPAs cannot achieve or do not intend to achieve net self-sufficiency this is a matter to be agreed outside the MoU.

2.4.1.3. With regards to the wider issue of landfill as a method of dealing with waste, paragraph 7.6 of the MoU states SEWPAG authorities agree that the challenge to be addressed is to implement the waste hierarchy and to enable better, more sustainable, ways of dealing with waste to reduce the current dependence on landfill.

2.4.1.4. Paragraph 6.3 of the MoU sets out the joint approach and states that there will “continue to be a need for some landfill capacity to deal with waste in the South East, particularly in the short and medium term before new recycling and treatment facilities are built and become operational”.

3. Capacity for managing inert waste through permanent deposit to land in the South East of England

3.1. C, D & E Waste arisings

3.1.1. Introduction

3.1.1.1. There is no requirement on businesses to submit records of Construction, Demolition & Excavation waste produced and hence estimating quantities for a specific county, with any degree of accuracy, is a challenge.

25 Updated April 2017
3.1.2. Methodology

3.1.2.1. The amount of C, D & E waste arising in London and the South East was calculated applying the following equation:

\[C, D \& E \text{ waste} = \text{Inputs to permitted facilities} + \text{outputs from permitted facilities} + \text{recycled aggregates} + \text{exemptions} \]

3.1.2.2. To assess C, D & E waste arisings at a regional level the national methodology was modified to reflect local circumstances. In particular:

- Values for waste classed as C, D & E waste managed through permitted sites in London and the South East in 2017 were taken as those reported in the WDI with steps taken to deduct possible double counting and, capture wastes that may have been reclassified as a consequence of processing through intermediate (e.g. transfer) sites. Deductions were made based on the following questions:
 - Does the site receive C,D&E waste from London or the South East?
 - Does the total of C,D&E waste outputs amount to less than the C,D&E waste inputs?
 - Does the site have outputs classed under Chapter 19?
 - What is the difference/shortfall and can that be made up by Chapter 19 waste?

- Adding an estimate of the quantity of waste that may have gone to sites in London and the South East at exempt sites. This is done by reviewing the number of exempt sites and estimating the quantity of waste that may have gone to them.

27 Department for Environment, Food and Rural Affairs (DEFRA), 2012, Methodology for estimating annual waste generation from the Construction, Demolition & Excavation (CD&E) Sectors in England
of sites which are registered for U1 exemptions for use in construction, as follows:

- Establish the population of registered exemptions by reference to the Environment Agency ‘register of exemptions’.
- Applying an estimated value for the quantity of waste managed at the U1 exemption from previous research.
- Adding an estimate of the quantity of waste converted to recycled aggregate in London and the South East. This value has been based on the value used in the London Local Aggregate Assessment (2017) and the South East Aggregates Monitoring Report.

3.1.2.3 The method uses information from several key sources as outlined in Table 1 below.

Table 1 Data used for calculating Construction, Demolition & Excavation (C, D &E) waste

<table>
<thead>
<tr>
<th>Data Needed</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste dealt with by transfer and treatment facilities</td>
<td>Environment Agency Waste Data Interrogator</td>
</tr>
<tr>
<td>Waste sent to landfill sites</td>
<td>Environment Agency Waste Data Interrogator</td>
</tr>
<tr>
<td>Waste managed under exemptions</td>
<td>Environment Agency public register of exempt sites</td>
</tr>
<tr>
<td></td>
<td>WRAP 2008 Estimate and local survey</td>
</tr>
<tr>
<td>Waste recycled as aggregate</td>
<td>South East Aggregates Monitoring Survey Report 2017</td>
</tr>
</tbody>
</table>

3.1.3. C, D & E waste arising trends

3.1.3.1 Quantities of C, D & E waste managed at permitted sites in the South East of England and London are set out in the tables below. The source of this data is the Environment Agency Waste Data Interrogator.

Table 2 C,D&E waste arising in the South East and former planning region it was managed based on methodology set out in section 3.1.2

<table>
<thead>
<tr>
<th>C,D&E waste arising in the South East and managed:</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within South East</td>
<td>11,318,000</td>
<td></td>
</tr>
</tbody>
</table>

28 Surrey County Council survey of exempt sites in 2016

SEWPAG Joint Position Statement: Permanent Deposit of Inert Waste on Land in the South East of England (draft v5.0), May 2019
3.1.4. C, D & E waste management

3.1.4.1. Of the estimated waste managed at permitted sites in the south east, shown in Figure 2, a large proportion of C, D & E waste is sent to sites classified by the EA as landfill (37%) though this is mostly to restore old mineral workings which may be taken to constitute a ‘beneficial use’ by planning authorities and is exempt from landfill tax.

Figure 2 Management profile for C, D & E waste in the South East of England

A similar exercise for London shows that 49% of estimated C, D & E waste is sent to Landfill, mainly to sites outside of the London Plan area.
3.1.5. C, D & E waste to landfill

3.1.5.1. Analysis of those facilities identified in the South East of England permitted as inert landfill (Appendix B) show that approximately 25% of waste received at those sites comes from London (Figure 4).

3.1.5.2. Of these sites over 95% are old mineral workings

3.2. Declining landfill capacity and ongoing need

3.2.1. Historically, landfill capacity in the South East has been tied to the number of mineral workings in the region and the need to restore these mineral workings. Traditional restoration schemes have required large amounts of material to fill the void which has resulted once the mineral is extracted.

3.2.1.2. The location of active inert landfill sites in the South East are displayed in Figure 6 below.
3.2.1.3. As with non-hazardous landfill, declining capacity of inert landfill is not surprising. Disposal, as a method of waste management, is now seen as an option of last resort. Landfill Tax was introduced as part of the Finance Act 1996 to discourage the disposal of waste to landfill and encourage more sustainable ways of managing waste. As Figure 7 shows, landfill tax has been successful in diverting waste away from landfill by significantly increasing the costs of landfilling and resulting in increased amounts of waste being managed through recycling and other recovery techniques.
Declining landfill capacity is also partly a function of the introduction of the Groundwater Directive and Landfill Directive which make the development of inert landfill more onerous and expensive, restricting opportunities. The result is that the capacity for the deposit of inert waste to land is decreasing. Inert landfill capacity and inputs to inert landfill in the South East from 2015 to 2017 are shown in Appendix B and Appendix C respectively.

The EA assessment of inert landfill capacity does not take into account constraints and opportunities such as:

- Temporary planning consents which have an end date and premature closures.
- Market factors such as other sites closing or a lack of material which could increase or decrease rates of fill.
- Capacity which may be provided for deposit of inert waste via exempt activities and those classed as recovery.
3.2.1.5. The estimated projection in Figure 8 includes an assumption that the remaining waste which needs to be managed once a facility closes will need to be managed at one of the nearest appropriate locations and that this location will be elsewhere in the South East. However, it is quite possible that inert waste could be transported to facilities outside of the South East.

3.3. Allocated facilities to come forward

3.3.1.1. Table 4 includes allocated sites or allocated extensions to existing sites in adopted mineral local plans which have not yet been developed. There may be reasons that mean these sites may not actually be developed.

Table 4 Planned sites for minerals with a proposed restoration scheme involving deposit of material to land in the South East of England (TBC)

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Authority</th>
<th>Estimated Void (cubic metres)</th>
<th>Start Date (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamm Court Farm</td>
<td>Surrey</td>
<td>560,000</td>
<td></td>
</tr>
<tr>
<td>Milton Park Farm</td>
<td>Surrey</td>
<td>1,700,000</td>
<td></td>
</tr>
<tr>
<td>Whitehall Farm</td>
<td>Surrey</td>
<td>590,000</td>
<td></td>
</tr>
<tr>
<td>Homers Farm</td>
<td>Surrey</td>
<td>540,000</td>
<td></td>
</tr>
<tr>
<td>Watersplash Farm</td>
<td>Surrey</td>
<td>680,000</td>
<td></td>
</tr>
<tr>
<td>Chalk Lake</td>
<td>Medway</td>
<td>400,000</td>
<td></td>
</tr>
<tr>
<td>Commissioners Road</td>
<td>Medway</td>
<td>463,600</td>
<td></td>
</tr>
<tr>
<td>Manor Farm</td>
<td>Medway</td>
<td>900,000</td>
<td></td>
</tr>
<tr>
<td>Extension to West Hoathly Brickworks</td>
<td>West Sussex</td>
<td>Unknown (2-3 years supply)</td>
<td>Early 2020s</td>
</tr>
<tr>
<td>(allocated in Minerals Local Plan)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Park</td>
<td>Buckinghamshire</td>
<td>1,500,000</td>
<td>Early 2020s</td>
</tr>
<tr>
<td>Slade Farm North</td>
<td>Buckinghamshire</td>
<td>700,000</td>
<td>Mid 2020s – Permission Granted Dec 2018, fill of phrasing from year 5 onwards.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total: 8,033,600 (excluding extension to West Hoathly Brickworks)</td>
<td></td>
</tr>
</tbody>
</table>
3.4. Conclusions

3.4.1. If no new capacity becomes available, and annual inputs occur at the same rate as those reported in 2017, existing inert landfill capacity in the South East will be exhausted by 2024\(^{29}\) (Figure 7)\(^{10}\). However, there are a number of factors (highlighted above) that will affect this date.

3.4.1.2. Over the next 10 years a number of inert landfill facilities are planned to close or are likely to close due to restoration being completed. At the same time, based on mineral workings allocated in adopted or emerging minerals plans, it can be expected that a number of new facilities will be opened creating additional void which may require restoration via the deposit of inert waste.

4. The Issue

4.1. Overview

4.1.1. The issues affecting permanent deposit of inert waste on land in the South East of England are as follows:

4.2. The need to restore mineral workings

4.2.1. As explained above, the beneficial use of C, D & E waste for inert fill, where this is necessary, can be categorised as a waste recovery operation where it is shown that the principal purpose of the activity is for the use of waste to replace other non-waste materials.

4.2.1.2. In general, inert material derived from C, D & E waste is a valuable resource and when used in mineral site restoration as inert fill (or as capping material for landfiling or landraising activities), is considered to be a recovery, rather than a disposal, operation. 2015 case law (the Methley case) clarified that the use of inert waste for quarry restoration is considered to be disposal unless it is shown that such use is obligated in some way (e.g. by planning condition), in which case it may be deemed a recovery operation\(^{31}\) by the Environment Agency (EA). This clarification of the Waste Framework Directive has meant that the EA now more frequently requires an Environmental Permit for landfilling to be obtained before

\(^{29}\) This assumes a conversion factor for the remaining capacity of 0.87 tonnes per cubic m\(^3\) but it should be noted that in reality the conversion rate will vary depending on the nature of the waste, the forecast waste capacity remaining is therefore a general estimate.

backfilling of mineral voids with inert waste can take place. Where the material is shown not to be a ‘waste’ (under ‘DoWCOP’) an Environmental Permit is not required.

4.2.1.3. This clarification regarding the interpretation of the Waste Framework Directive is affecting the development of inert landfill for the following reasons:

- Inert landfills operating under an Environmental Permit can only receive waste that meets certain ‘Waste Acceptance Criteria’ (WAC).
- Through the Groundwater Directive all inert landfills are must be lined with clay due to the risk of that the inert waste received at sites is contaminated with non-inert material.

4.2.1.4. Due to the costs associated with landfill lining some mineral operators have decided to restore their sites with non-hazardous waste as this attracts a higher gate fee and a different WAC testing regime\(^{32}\) applies. The result is that potentially in the future more mineral sites will be utilised for landfill of non-hazardous (non-inert) waste rather than inert waste as this would likely attract a higher gate fee.

4.2.1.5. The Minerals Product Association\(^{33}\) consider that this approach is impacting on the industry’s ability to restore of mineral workings because:

- Landfill operations are generally not allowed in river floodplains where almost all of the UKs sand and gravel is sourced from.
- Landfill operations have an ‘onerous regulatory burden’ (e.g. requirements for lining and landfill gas management).
- Landfill is discouraged as a way of managing waste in Waste Local Plans and so categorisation of restoration activity as ‘landfill’ may make it harder to obtain planning permission.

4.2.1.6. The above factors mean that fewer mineral operators are offering backfilling as a restoration option for mineral workings in the South East which in turn is leading to a decrease in the void space available for the management of inert waste.

4.3. Location of C, D & E Recycling facilities with mineral workings

\(^{32}\) WAC testing is a limit above which materials are judged before the Landfill class is changed or waste deposit prevented. It specifies the waste acceptance at that class of landfill, not the specific waste acceptance criteria that could be built into a planning permission or site specific permit.

4.3.1.1. A significant proportion of existing inert C, D & E waste recycling facilities are located on land associated with mineral workings. The recycling activity generally involves treatment, such as crushing and screening, which produces a soil like material and an aggregate. The residual derivative, or product of the recycling process, is an inert soil like material that can be used to restore the mineral working within which the recycling activity is situated and so these facilities usually benefit from temporary permissions associated with the timescale for mineral extraction and site restoration. Such CDE waste processing operations are generally very efficient\(^{34}\) meaning that the majority of the processed material leaves the site for a use elsewhere and only a small quantity is retained for use in restoration.

4.3.1.2. While temporary permission for inert C, D & E recycling operations may be encouraged, this must also take into account the need for timely restoration of mineral workings. Depending on their exact composition, the deposit of residues from CDE recycling used in the restoration of old mineral workings may require an environmental permit for either inert or non-inert landfill or recovery. The combined impact of policies which encourage recycling and the difficulties associated with backfilling using the residues of C, D & E waste recycling, results in a further decrease in the availability of material to restore mineral workings and inevitably slows down the pace of restoration contrary to NPPF policy which encourages the earliest possible restoration.

4.3.1.3. Due to the difficulties associated with restoration of minerals sites by backfilling with inert waste, as set out above, no fill or low-level restoration approaches may need to be accepted more frequently by mineral planning authorities. Such forms of restoration may be inherently beneficial, for example by providing opportunities for recreation and flood storage. Consequently, this means that in the future there is likely to be fewer proposals for restoration by backfilling resulting in reduced voidspace for the management of inert waste which may align with increased recycling rates of C&D waste.

4.4. Excavation waste

4.4.1.1. The majority of CDEW going to licensed landfills is clean excavation waste.

4.4.1.2. DCLG\(^{35}\) estimated that the total unprocessed clean excavation waste used or disposed of in licensed landfills in England in 2005 was approximately 20,529,000 tonnes. The same report estimated that 9,008,000 tonnes was used for the restoration of mineral workings\(^ {36}\). This clean excavation waste makes up approximately 70% of total C,D&E waste used for restoring mineral workings.

\(^ {34}\) It is estimated that 90% of C&D waste can be recycled.

\(^ {35}\) Department of Communities and Local Government Survey of Arisings and Use of Alternatives to Primary Aggregates in England, 2005: Construction, Demolition and Excavation Waste Table 5.3

\(^ {36}\) Department of Communities and Local Government Survey of Arisings and Use of Alternatives to Primary Aggregates in England, 2005: Construction, Demolition and Excavation Waste Table 5.6
4.4.1.3. Hence, deposit of such waste on land may not necessarily involve disposal and instead is more likely to be used for beneficial purposes (and so can be classed as ‘recovery’), particularly in the restoration of old mineral workings.

4.4.1.4. Between January 2018 and April 2019, CLA:RE has authorised the management of approximately 7 million tonnes of inert material under DoWCoP in London, the south east and east of England. While this material may have previously been used in the restoration of mineral workings, this approach is consistent with the application of the waste hierarchy which identifies waste prevention as the most beneficial approach.

4.5. London’s waste

4.5.1.1. Waste arising in London is planned for by individual London Borough planning authorities or groupings of such authorities. The Local Plans of these boroughs include policies on waste management which must be in general conformity with the London Plan. The London Plan considers all the waste arising in London and apportions a certain quantity of household and commercial and industrial waste to each Borough for forward planning purposes. However, the London Plan does not apportion Construction, Demolition and Excavation Waste.

4.5.1.2. The current London Plan (March 2016) sets a reuse and recycling target of 95% of construction, demolition and excavation waste by 2020. The GLA’s suggested changes to the draft of the New London Plan (December 2017) includes the same target but suggest a revision such that the target does not include excavation waste because “it is recognised that the particular characteristics of excavation waste are such that it is extremely difficult to recycle this waste stream”.

4.5.1.3. A report concerned with C, D & E waste which informs the draft new London Plan indicates that a large proportion of inert waste is recycled or beneficially reused, but that “in provisioning for future waste management requirements, the disposal of [C, D & E waste] to landfill is however a continuing concern – particularly given the finite landfill void available at existing facilities”.

4.5.1.4. The analysis highlights that the majority of C, D & E waste which originates in London and which is destined for landfill, is exported outside the capital for disposal. In particular, “substantial volumes of London’s inert waste are accepted at landfills in the South East and East of England”. The report estimates that in 2015, landfills in the South East received 1.5 Mt of inert waste from London (East of England received 2.2 Mt) and assumes that if

37 GLA Early Suggested Changes to the London Plan (Paragraph 9.7.4A)
38 Greater London Authority Waste Forecasts & Apportionments – Task 2 May 2017 (Paragraph 2.4)
39 Greater London Authority Waste Forecasts & Apportionments – Task 2 May 2017 (Paragraph 2.4.2)
“disposal rates remain constant at current levels, inert landfills in the South East have capacity adequate for a further 14 years operation”40.

4.5.1.5. This compares to the more pessimistic projections estimated in this JPS (see section 3.2). The report recognises that “disposal of [C, D & E waste] generated in London is therefore also contingent on continuing availability of void at these facilities”41. The draft new London Plan (December 2017) notes that “when it is intended to export waste to landfill outside of London, it will be important to show that the receiving authority has the capacity to deal with waste over the lifetime of the development.”42

4.5.1.6. The GLA’s proposed changes are intended to reflect this situation with regard to the London Plan’s target to achieve net self-sufficiency by 2026 through the insertion of the following text:

“The term net self-sufficiency is meant to apply to all waste streams, with the exception of excavation waste. The particular characteristics of this waste stream mean that it will be very challenging for London to provide either the sites or the level of compensatory provision needed to apply net self-sufficiency to this waste stream.”

4.5.1.7. The changes also propose including an expectation that such material will be put to ‘beneficial use’ with inclusion of a definition of this term as follows:

\textit{Beneficial use (excavation waste):} The placement of excavation waste to land in a way that

\begin{itemize}
\item provides environmental benefits, particularly through the restoration of priority habitat, flood alleviation or climate change adaptation/mitigation; OR
\item contributes towards the restoration of landfill sites and mineral workings while
\item minimising adverse impacts to the environment or communities (for example transport, air quality and other considerations); AND
\item demonstrating that the waste cannot be recycled or treated and man-aged in a more sustainable way.
\end{itemize}

5. Planning for London’s Excavation Waste

40 Greater London Authority Waste Forecasts & Apportionments – Task 2 May 2017 (Paragraph 2.4.2)

41 Greater London Authority Waste Forecasts & Apportionments – Task 2 May 2017 (Paragraph 2.4.2)

42 The draft new London Plan (Paragraph 9.7.5)
5.1. The London Plan

5.1.1. Non-hazardous excavation wastes, which includes clean inert excavated materials (such as subsoils and clayey materials arising from tunneling), cannot easily be ‘recycled’ but can be put to a beneficial use in engineering operations for example in conjunction with land reclamation or coastal defences. It is possible, and preferred, that such operations take place within London, however for large infrastructure projects\(^\text{43}\) (such as Crossrail 2 and HS2) the significant quantities of excavation waste arising mean that large quantities are likely to be exported for management in neighbouring areas.

5.2. C, D & E waste arising in London

5.2.1. Estimates produced in this report (see Table 3) suggest that 10,367,000 tonnes of C, D & E waste was produced in London in 2017 of which 22% of this total was managed in the South East of England and 12% specifically at landfill facilities in the South East of England (Table 5).

Table 5 Estimated C, D & E waste arising in London based on reconcile methodology\(^\text{44}\)

<table>
<thead>
<tr>
<th></th>
<th>Recycling</th>
<th>Treatment and Recovery (^\text{45})</th>
<th>Transfer</th>
<th>Disposal to land</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within London</td>
<td>1,400,000</td>
<td>1,219,000</td>
<td>101,000</td>
<td>1,574,000</td>
<td>4,294,000</td>
</tr>
<tr>
<td>London to elsewhere</td>
<td>60,000</td>
<td>1,248,000</td>
<td>237,000</td>
<td>2,237,000</td>
<td>3,782,000</td>
</tr>
<tr>
<td>London to South East</td>
<td>35,000</td>
<td>819,000</td>
<td>153,000</td>
<td>1,284,000</td>
<td>2,291,000</td>
</tr>
<tr>
<td>Total</td>
<td>1,495,000</td>
<td>3,286,000</td>
<td>491,000</td>
<td>5,095,000</td>
<td>10,367,000</td>
</tr>
</tbody>
</table>

\(^{43}\) It is suggested that the following quantities of excavation waste have arisen and may arise from the following key infrastructure projects (Source: SLR consulting report (Task 2 - CDEW and Hazardous Waste Forecasts) (May 2017)):
- Crossrail (2009-2018) – 6 million tonnes;
- HS2 (2018-2025) – 19.7 million tonnes;
- Thames Tideway Main Tunnel (2016-2022) – 4.7 million tonnes;
- Northern Line Extension (2016-2020) – 1 million tonnes

\(^{44}\) See section 3.1.2

\(^{45}\) Including recovery to land e.g. use of waste on/in land, backfilling, restoration where this is not classified as landfill.
5.2.1.2. The exact amount of inert waste exported from London to be managed in the South East in future is not clear. However, data underpinning the new London Plan suggest that overall 10,925,000 tonnes of C, D & E waste will be produced in London in 203046.

5.2.1.3. Based on this figure and assuming that similar amounts of C, D & E waste are sent to the South East from London approximately 2,414,000 tonnes of C, D & E waste originating in London would require management in the South East of England and approximately 1,353,000 tonnes would require management at landfill facilities in the South East of England.

Table 6 C, D & E waste arising in London which is likely to be managed in the South East of England

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>C D & E total arisings in London</td>
<td>10,072,000</td>
<td>10,497,000</td>
<td>10,925,000</td>
<td>11,356,000</td>
</tr>
<tr>
<td>Projected to be managed in South East</td>
<td>2,226,000</td>
<td>2,320,000</td>
<td>2,414,000</td>
<td>2,510,000</td>
</tr>
<tr>
<td>Projected to be managed as landfill in South East</td>
<td>1,247,000</td>
<td>1,300,000</td>
<td>1,353,000</td>
<td>1,406,000</td>
</tr>
</tbody>
</table>

5.2.1.4. These values are based on waste reported at facilities permitted by the Environment Agency whereas significant quantities of inert waste can be managed by activities that are exempted from permitting requirements and so actual quantities arising and being managed are likely to be much higher. This is supported by data47 underpinning the new London Plan which notes that material (particularly excavation waste) is loaded to bulk haulage vehicles at the point of arising, and exported directly out of London.

5.2.1.5. Ongoing reliance on inert landfill facilities in the South East of England in the medium/long term is not possible and it is essential that London meets its recycling targets. In addition, WPAs in the wider south east48 may need to prepare a planning policy position that anticipates and accommodates exports of inert excavation waste from London. This may include planning policies that recognise that waste will travel across administrative borders to be managed at one of the nearest appropriate installations.

5.2.1.6. With the large number of significant infrastructure projects planned in London including HS2, Crossrail2, Vauxhall Nine Elms and Silvertown tunnel construction, it can be expected that significant quantities of inert waste will be exported to the South East of England for

46 Table C1: Intermediate Projected arisings of Construction, Demolition and Excavation Waste, and Hazardous Waste, SLR consulting report (Task 2 - CDEW and Hazardous Waste Forecasts) May 2017

48 ‘Wider South East’ includes south east and east of England

SEWPAG Joint Position Statement: Permanent Deposit of Inert Waste on Land in the South East of England (draft v5.0), May 2019
management for some time to come. More information is needed on the type, amount and
timing of waste arising from these projects. This information needs to be provided to enable
WPAs in the South East of England to ensure capacity is available to manage these waste
arisings.

5.2.1.7. Ongoing dialogue between planning authorities in London and the South East is essential to
ensure that excavation waste from London is properly planned for.

6. Best Practice in Planning Policy for Permanent Deposit of Inert Waste on Land

6.1.1. Generally, for deposit of inert waste to land, sites are allocated for mineral extraction in
Mineral Local Plans requiring restoration schemes which include some element of inert fill
e.g. restoration to agriculture. These sites are listed in Table 4.

6.1.2. However, it is important that Waste Local Plans include appropriate criteria based policies to
enable the permanent deposit of waste to land, particularly where this is considered to be
recovery e.g. for the timely restoration of mineral workings. This will enable the WPAs to
demonstrate how they are allowing for the management of inert waste by its permanent
deposit on land.

6.1.3. A criteria based policy approach has been adopted by a number of WPAs in the South East of
England for recovery and/or disposal operations involving the permanent deposit of inert
waste to land. These policies have been tested at examination and have been found sound.
These policies acknowledge that sites for inert landfill facilities may come forward in the
future and that policies need to be flexible to deal with any proposals which do come
forward.

6.2. Examples of criteria based policy approach

6.2.1. Examples of criteria based policies from adopted Local Plans in the South East of England
(Appendix D) are outlined below:

- Policy WMP 8b of the East Sussex Waste and Minerals Local Plan (February 2013)
- Policy CSW 12 of the Kent Minerals and Waste Local Plan (July 2016)
- Policy W8 of the West Sussex Waste Local Plan (April 2014)

7. Conclusions

7.1.1. Inert excavation waste is often not easily recycled but lends itself to beneficial uses involving
the permanent deposit of this material. Such uses can be classed as ‘recovery’ rather than
‘disposal’, for example, the restoration of mineral voids where it meets the criteria for being
classed as recovery. It is considered that 100% of inert waste that cannot be recycled can be put to some beneficial use and this should be set as a target in plans.

7.1.2. The number and capacity of permitted facilities which involve the permanent deposit of inert waste on land is declining across the South East of England. The available voidspace is under pressure from construction activity in the south east and continued exports of large quantities of inert waste from London. At the same time increased recycling rates of C, D & E waste and lack of suitable material mean that existing void space is taking longer to fill i.e. some quarries are taking longer to restore than expected. This tension between the need to achieve timely restoration of existing mineral workings and the desire to increased rates of recycling of inert material creates a challenge for waste planning in balancing options to identify optimum approaches.

7.1.3. The tightening of environmental permitting requirements has meant that the permanent deposit of inert material deemed to be waste is more likely to require an environmental permit (either for disposal or recovery). Such permits include a need for more rigorous, and more costly, preparation and management of such sites.

7.1.4. There are severe constraints on the ability of producers of inert excavation waste in London to manage this waste within London and export of such waste for management within the South East will continue for the forseeable future. However, inert waste arising in London can be used to restore mineral workings in the South East of England and so is not necessarily discouraged. Indeed the achievement of timely restoration of such development is important and the availability of appropriate material, which may not be produced in sufficient quantities locally, is key to this. However, without replenishment, inert landfill capacity in the South East could be exhausted by as early as 2024. Therefore capacity provision in the South East should continue to be monitored and will need to be taken into account by WPAs when preparing related planning policy. Such policy should recognise the potential benefits of depositing inert waste associated with development that results in positive outcomes such as a healthier and more attractive environment; flood risk alleviation and nature conservation.

7.1.5. Individual SoCGs may be also be prepared between individual WPAs where particular movements of waste requiring deposit of inert waste in a recovery or disposal operation exist which require specific recognition. This is likely to be the case between London Authorities and authorities in the South East in recognition of the unique waste needs of London.

7.1.6. Several examples of policies from adopted waste local plans in the South East of England are included in Appendix D.

7.1.7. This document sets out technical information as part of a JPS with respect to the management of inert waste in the South East of England. The document is supported by

49 National Planning Practice Guidance for Waste Paragraph: 043

SEWPAG Joint Position Statement: Permanent Deposit of Inert Waste on Land in the South East of England (draft v5.0), May 2019
members of SEWPAG at officer level and information on inert landfill will be reviewed and updated annually in the SEWPAG Annual Monitoring Report (AMR).
Appendix A – Controls on activities involving the permanent deposit of inert excavation waste on land

<table>
<thead>
<tr>
<th>Activity</th>
<th>Source of material</th>
<th>Planning control (inc. rationale)</th>
<th>EA permit requirement</th>
<th>Position within Waste Hierarchy</th>
<th>Landfill Tax liability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backfilling(^{52}) a mineral void for purpose of restoring the land following mineral extraction specified in approved restoration plan</td>
<td>Construction site – clean inert excavation waste
C, D, E Waste recycling facility</td>
<td>Waste Planning Authority (WPA)/Minerals Planning Authority (MPA)
Planning condition specifying need for restoration of mineral site by backfilling to particular levels (e.g. existing ground or low level)</td>
<td>Environment Permit (Recovery(^{53})) required</td>
<td>Recovery</td>
<td>Specific exemption</td>
</tr>
</tbody>
</table>

\(^{50}\) PPG (Waste Chapter Para 002) sets out a list of matters which can be considered as waste operations, including landfill and land raising sites (such as soils to re-profile golf courses). PPG (Waste Chapter Para 048) states that “WPAs should be aware that the continued provision and availability of waste disposal sites, such as landfill, remain an important part of the network of facilities needed to manage England’s waste”.

\(^{51}\) Waste exemptions are set out in Schedule 3 of the Environmental Permitting (England and Wales) Regulations 2016

\(^{52}\) In the Waste Framework Directive (as amended) “backfilling” means “any recovery operation where suitable non-hazardous waste is used for purposes of reclamation in excavated areas or for engineering purposes in landscaping. Waste used for backfilling must substitute non-waste materials, be suitable for the aforementioned purposes, and be limited to the amount strictly necessary to achieve those purposes”.

\(^{53}\) Recovery has a unique legal definition under the Waste Framework Directive and case law has indicated that there must be planning “obligations” or else substitution tests met to demonstrate genuine recovery activity. Recovery sites are sustainable re-use activities and thereby enable beneficial re-use of waste materials. For more details see https://www.gov.uk/guidance/waste-recovery-plans-and-permits.
<table>
<thead>
<tr>
<th>Activity</th>
<th>Source of material</th>
<th>Planning control(^50) (inc. rationale)</th>
<th>EA permit requirement(^51)</th>
<th>Position within Waste Hierarchy</th>
<th>Landfill Tax liability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposit of material within a mineral void or on any land where the main purpose is disposal of surplus material(^54)</td>
<td>Construction site – clean inert excavation waste C, D, E Waste recycling facility</td>
<td>Covered by policy on ‘beneficial use’ of inert waste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deposit of material for use as daily cover on a landfill site</td>
<td>Construction site – clean inert excavation waste C, D, E Waste recycling facility</td>
<td>WPA. The planning permission for the landfill site may include a condition requiring that deposited waste is covered on an ongoing basis to avoid odours, vermin, litter, fly infestations, fires and dust.</td>
<td></td>
<td>Recovery or disposal</td>
<td>Imported materials used for landfill engineering of basal and side slopes are exempt from LF tax.</td>
</tr>
</tbody>
</table>

\(^{54}\) N.B. This scenario is unlikely, as ‘disposal’ of inert waste may not be permitted by planning policy as it may be considered that there is no reason why such waste cannot be managed further up the hierarchy i.e. recovered in some way.

SEWPAG Joint Position Statement: Permanent Deposit of Inert Waste on Land in the South East of England (draft v5.0), May 2019
<table>
<thead>
<tr>
<th>Activity</th>
<th>Source of material</th>
<th>Planning control (inc. rationale)</th>
<th>EA permit requirement</th>
<th>Position within Waste Hierarchy</th>
<th>Landfill Tax liability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural land raising e.g. to improve drainage</td>
<td>C, D, E Waste recycling facility, Construction site – clean inert excavation waste</td>
<td>WPA/MPA Covered by policy on ‘beneficial use’ of inert waste</td>
<td>Land-spreading or land reclamation permit</td>
<td>Recovery</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Clean material excavated on site of use and/or specifically sourced for the purpose of the development</td>
<td>Other LPA (not a WPA matter) Development is covered by planning permission for a non-waste development</td>
<td>Not required. Covered by DoWCoP.</td>
<td>Materials re-use (Waste prevention (as the ‘material’ has been managed in a way that avoids it becoming waste))</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
Activity

- Landscape enhancement features/land sculpture
- Construction site – clean inert C D E waste
- Clean material excavated on site of use and/or specifically sourced for the

Source of material

- C, D, E Waste recycling facility
- Construction site – clean inert C D E waste
- Other LPA (not a WPA matter)

Planning control\(^{50}\) (inc. rationale)

- WPA/MPA - covered by policy on ‘beneficial use’ of inert waste.
- Other LPA (not a WPA matter) where activity forms part of a non-waste development (covered by planning permission for the non-waste development).
- Not required.

EA permit requirement\(^{51}\)

- Environment Permit (Recovery) required
- Depending on type of inert waste being used and its quantity then the activity may be exempt from the need for an Environment Permit under exemption ‘U1’\(^{55}\).
- Covered by DoWCoP.

Position within Waste Hierarchy

- Recovery
- Not applicable

Landfill Tax liability

- Not applicable

\(^{55}\) U1 (Use of waste in construction) exemption: “construction” means the carrying on of building or engineering work which includes the repair, alteration, maintenance or improvement of an existing work and preparatory or landscaping works; U1 allows for management of the following types of inert waste: Waste from mineral non-metalliferous excavation, Waste gravel and crushed rock (with specific exemption), Waste sand and clays, Shellfish shells from which the soft tissue or flesh has been removed, Waste ceramics, bricks, tiles and construction products (after thermal processing), Waste concrete and concrete sludge, Concrete, Bricks, Tiles and ceramics, Mixtures of concrete, bricks, tiles and ceramics (with specific exemption), Dredging spoil (with specific exemption), Track ballast (with specific exemption), Glass, Minerals (for example sand, stones), Aggregates only. There are different thresholds on the quantity of waste that may be used. For more details see https://www.gov.uk/guidance/waste-exemptions-using-waste
<table>
<thead>
<tr>
<th>Activity</th>
<th>Source of material</th>
<th>Planning control[^50] (inc. rationale)</th>
<th>EA permit requirement[^51]</th>
<th>Position within Waste Hierarchy</th>
<th>Landfill Tax liability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic bunding or bunding to mitigate visual impacts (by hiding) of development</td>
<td>C, D, E Waste recycling facility, Construction site – clean inert excavation waste brought to site</td>
<td>Development is covered by planning permission for a non-waste development (covered by planning permission for the non-waste development).</td>
<td>Environment Permit (Recovery) required. Depending on type of inert waste being used and its quantity then the activity may be exempt from the need for an Environment Permit under exemption ‘U1’.</td>
<td>Recovery</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Clean material excavated on site of use and/or specifically sourced for the purpose of the development</td>
<td>Other LPA (not a WPA matter) Development is covered by planning permission for a non-waste development</td>
<td>Not required where bunds are required as part of development. Covered by DoWCoP.</td>
<td>Materials re-use ((Waste prevention (as the ‘material’ has been managed in a way that avoids it becoming waste))</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Creation of features associated with recreational activities</td>
<td>C, D, E Waste recycling facility</td>
<td>WPA/MPA - covered by policy on ‘beneficial use’ of inert waste.</td>
<td>These should be fully purposed and supported by a business plan and recovery.</td>
<td>Recovery</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

[^50]: Permanent Deposit of Inert Waste on Land in the South East of England (draft v5.0), May 2019
<table>
<thead>
<tr>
<th>Activity</th>
<th>Source of material</th>
<th>Planning control</th>
<th>EA permit requirement</th>
<th>Position within Waste Hierarchy</th>
<th>Landfill Tax liability</th>
</tr>
</thead>
<tbody>
<tr>
<td>such as mounding on golf courses and bunds at rifle ranges.</td>
<td>Construction site – clean inert excavation waste brought to site</td>
<td>Other LPA (not a WPA matter) where development is fully purposed and supported by a business plan and supporting evidence for actual use as such, not an aspiration to create a leisure facility but with no true business plan which shows viability of use post deposit</td>
<td>supporting evidence for actual use as such, not an aspiration to create a leisure facility but with no true business plan to enable use post deposit</td>
<td>Recovery permit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clean material excavated on site of use and/or specifically sourced for the purpose of the development</td>
<td>Other LPA (not a WPA matter) Development is covered by planning permission for a non-waste development</td>
<td>Not required. Covered by DoWCoP.</td>
<td>Materials re-use (Waste prevention (as the ‘material’ has been managed in a way that avoids it becoming waste))</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
Table 7: Summary of inert landfill inputs by site based on the Environment Agency Waste Data Interrogator in tonnes (TBC)

<table>
<thead>
<tr>
<th>Facility name</th>
<th>Facility address</th>
<th>Operator name</th>
<th>Former planning sub region</th>
<th>Local authority</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copyhold Farm Landfill</td>
<td>Priors Court Road, Curridge RG16 9DR</td>
<td>Raymond Brown Minerals & Recycling Ltd</td>
<td>Berkshire</td>
<td>West Berkshire</td>
<td>-</td>
<td>37,597</td>
<td>1,966</td>
</tr>
<tr>
<td>Hindhay Quarry</td>
<td>Hindhay Quarry, Furze Platt Road, Pinkneys Green, Maidenhead, Ber, SL6 6NL,</td>
<td>Summerleaze Limited</td>
<td>Berkshire</td>
<td>Windsor and Maidenhead</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Horton Brook Quarry</td>
<td>Horton, Slough, Berkshire SL3 0LP</td>
<td>Jayflex (Aggregates) Ltd</td>
<td>Berkshire</td>
<td>Slough</td>
<td>195,420</td>
<td>203,355</td>
<td>64,680</td>
</tr>
<tr>
<td>Hythe End Farm Landfill</td>
<td>Hythe End Road, Wraysbury TW19 5AW</td>
<td>Charles Morris Fertilizers Limited</td>
<td>Berkshire</td>
<td>Windsor and Maidenhead</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kingsmead Landfill</td>
<td>Kingsmead Landfill, Stanwell Road, Horton, Berkshire, SL3 9PA</td>
<td>Cemex UK Materials Limited</td>
<td>Berkshire</td>
<td>Windsor and Maidenhead</td>
<td>189,762</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>All Souls Farm Quarry</td>
<td>Wexham Park Lane, Wexham SL3 6LX</td>
<td>Tarmac Ltd</td>
<td>Buckinghamshire</td>
<td>South Buckinghamshire</td>
<td>112,200</td>
<td>57,707</td>
<td>52,541</td>
</tr>
<tr>
<td>Beechwood Nurseries Landfill</td>
<td>Farnham Lane, Farnham Royal, Berkshire SL2 3SD</td>
<td>Summerleaze Limited</td>
<td>Buckinghamshire</td>
<td>Slough</td>
<td>103,688</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Denham Park Farm</td>
<td>Denham Park Farm, Denham Green, Buckinghamshire, UB9 5DL,</td>
<td>Ingrebourne Valley Ltd</td>
<td>Buckinghamshire</td>
<td>South Buckinghamshire</td>
<td>155,612</td>
<td>11,581</td>
<td>86,090</td>
</tr>
<tr>
<td>Facility name</td>
<td>Facility address</td>
<td>Operator name</td>
<td>Former planning sub region</td>
<td>Local authority</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Bleak Hill 1 Landfill Site</td>
<td>Nea Road, Ringwood BH24 3PL</td>
<td>Cemex UK Ltd</td>
<td>Hampshire</td>
<td>New Forest</td>
<td>130,530</td>
<td>43,781</td>
<td>59,515</td>
</tr>
<tr>
<td>Kingsley Quarry</td>
<td>Sandybridge Farm, Main Road, Kinglsey, Hants, GU35 9NQ,</td>
<td>Sita U K Limited</td>
<td>Hampshire</td>
<td>East Hampshire</td>
<td>38,731</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Manor Farm Landfill Site</td>
<td>Manor Farm, Tadley RG26 5HW</td>
<td>G. B. Foot Ltd</td>
<td>Hampshire</td>
<td>Basingstoke and Deane</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Roke Manor Quarry</td>
<td>Shootash, Romsey, Hampshire, SO51 6GA,</td>
<td>Raymond Brown Minerals And Recycling Limited</td>
<td>Hampshire</td>
<td>Test Valley</td>
<td>-</td>
<td>172,329</td>
<td>149,761</td>
</tr>
<tr>
<td>Rookery Farm Landfill</td>
<td>Botley Road, Burridge SO31 1BL</td>
<td>Raymond Brown Eco Bio Limited</td>
<td>Hampshire</td>
<td>Fareham</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Knighton Sandpit Landfill</td>
<td>Newchurch PO36 ONS</td>
<td>Knighton Sandpit Limited</td>
<td>Isle of Wight</td>
<td>Isle of Wight</td>
<td>17,506</td>
<td>9,170</td>
<td>7,830</td>
</tr>
<tr>
<td>Lower Knighton Landfill</td>
<td>Lower Knighton Road, Newchurch PO30 ONS</td>
<td>Reynolds and Read Ltd</td>
<td>Isle of Wight</td>
<td>Isle of Wight</td>
<td>17,506</td>
<td>9,170</td>
<td>7,830</td>
</tr>
<tr>
<td>Lynn Pit Landfill</td>
<td>Briddlesford Road, Down End PO30 2PD</td>
<td>Westridge Developments Ltd</td>
<td>Isle of Wight</td>
<td>Isle of Wight</td>
<td>45,403</td>
<td>41,879</td>
<td>49,506</td>
</tr>
<tr>
<td>St Georges Down Quarry</td>
<td>Newport, Isle Of Wight, PO30 3BX,</td>
<td>Wight Building Materials Limited</td>
<td>Isle of Wight</td>
<td>Isle of Wight</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Facility name</td>
<td>Facility address</td>
<td>Operator name</td>
<td>Former planning sub region</td>
<td>Local authority</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>----------------------------</td>
<td>------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Allens Bank, Lydd</td>
<td>Allens Bank, Lydd</td>
<td>Brett Aggregates Ltd</td>
<td>Kent</td>
<td>Shepway</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alpha Lake</td>
<td>Brett Aggregates, North Sea Terminal, Salt Lane, Cliffe, Kent, ME3 7SX,</td>
<td>Brett Aggregates Limited</td>
<td>Kent</td>
<td>Medway</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arnolds Lodge Landfill</td>
<td>Hale Street, East Peckham, Tonbridge TN12 5HL</td>
<td>J Clubb Limited</td>
<td>Kent</td>
<td>Tonbridge and Malling</td>
<td>73,613</td>
<td>72,210</td>
<td>8,082</td>
</tr>
<tr>
<td>Borough Green Inert Landfill</td>
<td>Borough Green Sand Pit, Sevenoaks TN15 8HJ</td>
<td>Borough Green Sand Pits Ltd</td>
<td>Kent</td>
<td>Tonbridge and Malling</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Borough Green Landfill</td>
<td>Wrotham Road, Sevenoaks TN15 8DN</td>
<td>Robert Body Haulage Limited</td>
<td>Kent</td>
<td>Tonbridge and Malling</td>
<td>349,842</td>
<td>348,609</td>
<td>397,252</td>
</tr>
<tr>
<td>Ham Farm Landfill</td>
<td>Ham Road, Faversham ME13 7TS</td>
<td>Brett Aggregates Ltd</td>
<td>Kent</td>
<td>Swale</td>
<td>-</td>
<td>2,737</td>
<td>-</td>
</tr>
<tr>
<td>Hermitage Quarry Inert Landfill</td>
<td>Hermitage Lane, Maidstone ME16 9NT</td>
<td>Gallagher Aggregates Limited</td>
<td>Kent</td>
<td>Tonbridge and Malling</td>
<td>355,578</td>
<td>214,676</td>
<td>327,715</td>
</tr>
<tr>
<td>Perry's Farm</td>
<td>Grain Road, Isle of Grain, Rochester ME3 0AW</td>
<td>J Clubb Limited</td>
<td>Kent</td>
<td>Medway</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stone Pit II, Dartford</td>
<td>St James Lane, Stone, Dartford DA9 9DT</td>
<td>Seer Restoration Ltd</td>
<td>Kent</td>
<td>Dartford</td>
<td>221,522</td>
<td>425,398</td>
<td>283,066</td>
</tr>
<tr>
<td>Facility name</td>
<td>Facility address</td>
<td>Operator name</td>
<td>Former planning sub region</td>
<td>Local authority</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Wrotham Quarry At Addington</td>
<td>Wrotham Quarry, Trottscliffe Road, Addington Wrotham, Kent, ME19 5DL,</td>
<td>Ferns Surfacing Limited</td>
<td>Kent</td>
<td>Tonbridge and Malling</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EWELME 2</td>
<td>Wallingford OX10 6PJ</td>
<td>S Grundon (Waste) Ltd</td>
<td>Oxfordshire</td>
<td>South Oxfordshire</td>
<td>1</td>
<td>1,118</td>
<td>37</td>
</tr>
<tr>
<td>Shellingford Quarry Landfill</td>
<td>Stanford-in-the-Vale SN7 8HE</td>
<td>Multi - Agg Limited</td>
<td>Oxfordshire</td>
<td>Vale of White Horse</td>
<td>127,015</td>
<td>79,051</td>
<td>122,816</td>
</tr>
<tr>
<td>Shipton Quarry</td>
<td>Shipton Quarry, Shipton On Cherwell, Oxfordshire, OX5 3EL,</td>
<td>Alan Hadley Limited</td>
<td>Oxfordshire</td>
<td>Cherwell</td>
<td>177,358</td>
<td>173,073</td>
<td>205,566</td>
</tr>
<tr>
<td>Upwood Quarry</td>
<td>Upwood Quarry, Besselsleigh, Abingdon, Oxfordshire, OX13 5DW,</td>
<td>Hills Quarry Products Limited</td>
<td>Oxfordshire</td>
<td>Vale of White Horse</td>
<td>30,715</td>
<td>112,843</td>
<td>79,141</td>
</tr>
<tr>
<td>Woodeaton Quarry</td>
<td>Mckenna Environmental Limited, Woodeaton Quarry, Noke, Woodateon, Oxfordshire, OX3 9TJ,</td>
<td>Mckenna Environmental Limited</td>
<td>Oxfordshire</td>
<td>Cherwell</td>
<td>61,860</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Addlestone Quarry Landfill</td>
<td>Addlestone Quarry, Byfleet Road, Weybridge KT15 3LA</td>
<td>RMC MATERIALS LTD</td>
<td>Surrey</td>
<td>Runnymede</td>
<td>54,036</td>
<td>38,343</td>
<td>88,336</td>
</tr>
<tr>
<td>Alton Road Sand Pit</td>
<td>Alton Road Sand Pit, Alton Road, Wrecclesham, Farnham, Surrey, GU10 5EL,</td>
<td>Earthline Limited</td>
<td>Surrey</td>
<td>Waverley</td>
<td>127,427</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Facility name</td>
<td>Facility address</td>
<td>Operator name</td>
<td>Former planning sub region</td>
<td>Local authority</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>-------------------------</td>
<td>----------------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Betchworth Sand Quarry Landfill</td>
<td>Reigate Road Quarry, Reigate Road, Betchworth RH3 7HB</td>
<td>J & J Franks Ltd</td>
<td>Surrey</td>
<td>Reigate and Banstead</td>
<td>165,227</td>
<td>193,087</td>
<td>147,001</td>
</tr>
<tr>
<td>Homefield Landfill Site</td>
<td>Homefield Sandpit, Guildford Road, Farnham GU10 1PG</td>
<td>Chambers Runfold Plc</td>
<td>Surrey</td>
<td>Waverley</td>
<td>26,807</td>
<td>25,247</td>
<td>57,537</td>
</tr>
<tr>
<td>Laleham Quarry</td>
<td>Littleton Lane, Shepperton TW17 0NF</td>
<td>Brett Aggregates Limited</td>
<td>Surrey</td>
<td>Spelthorne</td>
<td>-</td>
<td>240,538</td>
<td>232,263</td>
</tr>
<tr>
<td>Mercers South</td>
<td>Nutfield</td>
<td></td>
<td>Surrey</td>
<td>Tandridge</td>
<td>14,470</td>
<td>-</td>
<td>83,263</td>
</tr>
<tr>
<td>Oxted Quarry Landfill</td>
<td>Chalk Pit Lane, Oxted RH8 0QW</td>
<td>Southern Gravel Limited</td>
<td>Surrey</td>
<td>Tandridge</td>
<td>143,455</td>
<td>-</td>
<td>4,783</td>
</tr>
<tr>
<td>Oxted Sandpit</td>
<td>Barrow Green Road</td>
<td></td>
<td>Surrey</td>
<td>Tandridge</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>stanwell III landfill</td>
<td>Staines TW19 7XT</td>
<td>Cappagh Public Works Limited</td>
<td>Surrey</td>
<td>Spelthorne</td>
<td>6,048</td>
<td>14,450</td>
<td>21,796</td>
</tr>
<tr>
<td>Stock Farm Stone Quarry</td>
<td>Hyde Lane, Farnham GU10 2LP</td>
<td>TJ Landfill</td>
<td>Surrey</td>
<td>Waverley</td>
<td>46,606</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Boxgrove Landfill</td>
<td>Tinwood Lane, Earitham, Chichester, West Sussex, PO18 0NB</td>
<td>Inert Waste Recycling Limited</td>
<td>West Sussex</td>
<td>Chichester</td>
<td>181,722</td>
<td>-</td>
<td>56,961</td>
</tr>
<tr>
<td>Facility name</td>
<td>Facility address</td>
<td>Operator name</td>
<td>Former planning sub region</td>
<td>Local authority</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------------</td>
<td>----------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Pendean Landfill</td>
<td>Oaklands Lane, Midhurst GU29 0ER</td>
<td>Cemex UK Materials Limited</td>
<td>West Sussex</td>
<td>Chichester</td>
<td>65,687</td>
<td>98,283</td>
<td>50,732</td>
</tr>
<tr>
<td>Rudgwick Landfill Site</td>
<td>Rudgwick Brickworks, Lynwick Street, Rudgwick, West Sussex, RH12 3DH</td>
<td>Restoration to Agriculture Ltd</td>
<td>West Sussex</td>
<td>Horsham</td>
<td>202,219</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3437566</td>
<td>2626233</td>
<td>2646064</td>
</tr>
</tbody>
</table>
Appendix C – Inert landfill Capacity in the South East

Table 8 Remaining void for inert landfill facilities in the South East of England based on Environment Agency returns for remaining void space (updated by MPA)

<table>
<thead>
<tr>
<th>Facility name</th>
<th>Facility address</th>
<th>Operator name</th>
<th>Former planning sub region</th>
<th>Local authority</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copyhold Farm Landfill</td>
<td>Priors Court Road, Curridge RG16 9DR</td>
<td>Raymond Brown Minerals & Recycling Ltd</td>
<td>Berkshire</td>
<td>West Berkshire</td>
<td>2,000</td>
<td>5,530</td>
<td>5,530</td>
</tr>
<tr>
<td>Hindhay Quarry</td>
<td>Hindhay Quarry, Furze Platt Road, Pinkneys Green, Maidenhead, Ber, SL6 6NL</td>
<td>Summerleaze Limited</td>
<td>Berkshire</td>
<td>Windsor and Maidenhead</td>
<td>-</td>
<td>250,000</td>
<td>250,000</td>
</tr>
<tr>
<td>Horton Brook Quarry</td>
<td>Horton, Slough, Berkshire SL3 0LP</td>
<td>Jayflex (Aggregates) Ltd</td>
<td>Berkshire</td>
<td>Slough</td>
<td>811,600</td>
<td>747,000</td>
<td>623,318</td>
</tr>
<tr>
<td>Hythe End Farm Landfill</td>
<td>Hythe End Road, Wraysbury TW19 5AW</td>
<td>Charles Morris Fertilizers Limited</td>
<td>Berkshire</td>
<td>Windsor and Maidenhead</td>
<td>60,000</td>
<td>60,000</td>
<td>60,000</td>
</tr>
<tr>
<td>Kingsmead Landfill</td>
<td>Kingsmead Landfill, Stanwell Road, Horton, Berkshire, SL3 9PA</td>
<td>Cemex UK Materials Limited</td>
<td>Berkshire</td>
<td>Windsor and Maidenhead</td>
<td>4,340,000</td>
<td>4,340,000</td>
<td>4,340,000</td>
</tr>
<tr>
<td>All Souls Farm Quarry</td>
<td>Wexham Park Lane. Wexham SL3 6LX</td>
<td>Tarmac Ltd</td>
<td>South Buckinghamshire</td>
<td></td>
<td>69,000</td>
<td>39,819</td>
<td>30,815</td>
</tr>
<tr>
<td>Beechwood Nurseries Landfill</td>
<td>Farnham Lane, Farnham Royal, Berkshire SL2 3SD</td>
<td>Summerleaze Limited</td>
<td>Buckinghamshire</td>
<td>Slough</td>
<td>-</td>
<td>400,000</td>
<td>352,500</td>
</tr>
<tr>
<td>Denham Park Farm</td>
<td>Denham Park Farm, Denham Green, Buckinghamshire, UB9 5DL</td>
<td>Inglesbourne Valley Ltd</td>
<td>Buckinghamshire</td>
<td>South Buckinghamshire</td>
<td>1,888,419</td>
<td>1,802,329</td>
<td>1,646,717</td>
</tr>
<tr>
<td>Facility name</td>
<td>Facility address</td>
<td>Operator name</td>
<td>Former planning sub region</td>
<td>Local authority</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>---</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Bleak Hill 1 Landfill Site</td>
<td>Nea Road, Ringwood BH24 3PL</td>
<td>Cemex UK Ltd</td>
<td>Hampshire</td>
<td>New Forest</td>
<td>992,578</td>
<td>1,626,479</td>
<td>1,495,949</td>
</tr>
<tr>
<td>Kingsley Quarry</td>
<td>Sandybridge Farm, Main Road, Kinglsey, Hants, GU35 9NQ,</td>
<td>Sita U K Limited</td>
<td>Hampshire</td>
<td>East Hampshire</td>
<td>-</td>
<td>140,000</td>
<td>109,016</td>
</tr>
<tr>
<td>Manor Farm Landfill Site</td>
<td>Manor Farm, Tadley RG26 5HW</td>
<td>G. B. Foot Ltd</td>
<td>Hampshire</td>
<td>Basingstoke and Deane</td>
<td>223,000</td>
<td>223,000</td>
<td>223,000</td>
</tr>
<tr>
<td>Roke Manor Quarry</td>
<td>Shootash, Romsey, Hampshire, S051 6GA,</td>
<td>Raymond Brown Minerals And Recycling Limited</td>
<td>Hampshire</td>
<td>Test Valley</td>
<td>-</td>
<td>-</td>
<td>551,200</td>
</tr>
<tr>
<td>Rookery Farm Landfill</td>
<td>Botley Road, Burridge SO31 1BL</td>
<td>Raymond Brown Eco Bio Limited</td>
<td>Hampshire</td>
<td>Fareham</td>
<td>879,885</td>
<td>879,885</td>
<td>879,885</td>
</tr>
<tr>
<td>Knighton Sandpit Landfill</td>
<td>Newchurch PO36 ONS</td>
<td>Knighton Sandpit Limited</td>
<td>Isle of Wight</td>
<td>Isle of Wight</td>
<td>347,298</td>
<td>352,933</td>
<td>356,562</td>
</tr>
<tr>
<td>Lower Knighton Landfill</td>
<td>Lower Knighton Road, Newchurch PO30 ONS</td>
<td>Reynolds and Read Ltd</td>
<td>Isle of Wight</td>
<td>Isle of Wight</td>
<td>203,127</td>
<td>195,610</td>
<td>178,104</td>
</tr>
<tr>
<td>Lynn Pit Landfill</td>
<td>Briddlesford Road, Down End PO30 2PD</td>
<td>Westridge Developments Ltd</td>
<td>Isle of Wight</td>
<td>Isle of Wight</td>
<td>Closed</td>
<td>28,270</td>
<td>28,270</td>
</tr>
<tr>
<td>St Georges Down Quarry</td>
<td>Newport, Isle Of Wight, PO30 3BX,</td>
<td>Wight Building Materials Limited</td>
<td>Isle of Wight</td>
<td>Isle of Wight</td>
<td>-</td>
<td>-</td>
<td>300,000</td>
</tr>
<tr>
<td>Facility name</td>
<td>Facility address</td>
<td>Operator name</td>
<td>Former planning sub region</td>
<td>Local authority</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>--------------------------------</td>
<td>----------------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Allens Bank, Lydd</td>
<td>Allens Bank, Lydd</td>
<td>Brett Aggregates Ltd</td>
<td>Kent</td>
<td>Shepway</td>
<td>-</td>
<td>-</td>
<td>Pre-operational</td>
</tr>
<tr>
<td>Alpha Lake</td>
<td>Brett Aggregates, North Sea Terminal, Salt Lane, Cliffe, Kent, ME3 7SX,</td>
<td>Brett Aggregates Limited</td>
<td>Kent</td>
<td>Medway</td>
<td>-</td>
<td>-</td>
<td>Pre-operational</td>
</tr>
<tr>
<td>Arnolds Lodge Landfill</td>
<td>Hale Street, East Peckham, Tonbridge TN12 5HL</td>
<td>J Clubb Limited</td>
<td>Kent</td>
<td>Tonbridge and Malling</td>
<td>19,418</td>
<td>15,000</td>
<td>50,000</td>
</tr>
<tr>
<td>Borough Green Inert Landfill</td>
<td>Borough Green Sand Pit, Sevenoaks TN15 8HJ</td>
<td>Borough Green Sand Pits Ltd</td>
<td>Kent</td>
<td>Tonbridge and Malling</td>
<td>170,035</td>
<td>860,000</td>
<td>781,150</td>
</tr>
<tr>
<td>Borough Green Landfill</td>
<td>Wrotham Road, Sevenoaks TN15 8DN</td>
<td>Robert Body Haulage Limited</td>
<td>Kent</td>
<td>Tonbridge and Malling</td>
<td>2,293,793</td>
<td>2,171,493</td>
<td>1,974,881</td>
</tr>
<tr>
<td>Ham Farm Landfill</td>
<td>Ham Road, Faversham ME13 7TS</td>
<td>Brett Aggregates Ltd</td>
<td>Kent</td>
<td>Swale</td>
<td>115,000</td>
<td>115,000</td>
<td>115,000</td>
</tr>
<tr>
<td>Hermitage Quarry Inert Landfill</td>
<td>Hermitage Lane, Maidstone ME16 9NT</td>
<td>Gallagher Aggregates Limited</td>
<td>Kent</td>
<td>Tonbridge and Malling</td>
<td>324,467</td>
<td>870,828</td>
<td>693,039</td>
</tr>
</tbody>
</table>

56 KCC data suggests 8.6 million based on information provided by operator

SEWPAG Joint Position Statement: Permanent Deposit of Inert Waste on Land in the South East of England (draft v5.0), May 2019
<table>
<thead>
<tr>
<th>Facility name</th>
<th>Facility address</th>
<th>Operator name</th>
<th>Former planning sub region</th>
<th>Local authority</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perry's Farm</td>
<td>Grain Road, Isle of Grain, Rochester ME3 0AW</td>
<td>J Clubb Limited</td>
<td>Kent</td>
<td>Medway</td>
<td>50,000</td>
<td>50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>Stone Pit II, Dartford</td>
<td>St James Lane, Stone, Dartford DA9 9DT</td>
<td>Seer Restoration Ltd</td>
<td>Kent</td>
<td>Dartford</td>
<td>1,309,084</td>
<td>1,001,541</td>
<td>735,516</td>
</tr>
<tr>
<td>Wrotham Quarry At Addington</td>
<td>Wrotham Quarry, Trottiscliffe Road, Addington Wrotham, Kent, ME19 SDL,</td>
<td>Frens Surfacing Limited</td>
<td>Kent</td>
<td>Tonbridge and Malling</td>
<td>-</td>
<td>-</td>
<td>Pre operational</td>
</tr>
<tr>
<td>EWELME 2</td>
<td>Wallingford OX10 6PJ</td>
<td>S Grundon (Waste) Ltd</td>
<td>Oxfordshire</td>
<td>South Oxfordshire</td>
<td>133,300</td>
<td>133,300</td>
<td>133,300</td>
</tr>
<tr>
<td>Shellingford Quarry Landfill</td>
<td>Stanford-in-the-Vale SN7 8HE</td>
<td>Multi - Agg Limited</td>
<td>Oxfordshire</td>
<td>Vale of White Horse</td>
<td>1,750,000</td>
<td>1,630,000</td>
<td>1,561,343</td>
</tr>
<tr>
<td>Shipton Quarry</td>
<td>Shipton Quarry, Shipton On Cherwell, Oxfordshire, OX5 3EL,</td>
<td>Alan Hadley Limited</td>
<td>Oxfordshire</td>
<td>Cherwell</td>
<td>1,850,000</td>
<td>1,740,000</td>
<td>1,644,131</td>
</tr>
<tr>
<td>Upwood Quarry</td>
<td>Upwood Quarry, Besselsleigh, Abingdon, Oxfordshire, OX13 5DW,</td>
<td>Hills Quarry Products Limited</td>
<td>Oxfordshire</td>
<td>Vale of White Horse</td>
<td>415,000</td>
<td>353,304</td>
<td>339,455</td>
</tr>
<tr>
<td>Woodeaton Quarry</td>
<td>Mckenna Environmental Limited, Woodeaton Quarry, Noke, Woodeaton, Oxfordshire, OX3 9TJ,</td>
<td>Mckenna Environmental Limited</td>
<td>Oxfordshire</td>
<td>Cherwell</td>
<td>-</td>
<td>-</td>
<td>400,000</td>
</tr>
</tbody>
</table>

S E W P A G J o i n t P o s i t i o n S t a t e m e n t : P e r m a n e n t D e p o s i t o f I n e r t W a s t e o n L a n d i n t h e S o u t h E a s t o f E n g l a n d (d r a f t v 5.0), M a y 2 0 1 9
<table>
<thead>
<tr>
<th>Facility name</th>
<th>Facility address</th>
<th>Operator name</th>
<th>Former planning sub region</th>
<th>Local authority</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addlestone Quarry Landfill</td>
<td>Addlestone Quarry, Byfleet Road, Weybridge KT15 3LA</td>
<td>RMC MATERIALS LTD</td>
<td>Surrey</td>
<td>Runnymede</td>
<td>679,916</td>
<td>615,058</td>
<td>551,145</td>
</tr>
<tr>
<td>Alton Road Sand Pit</td>
<td>Alton Road Sand Pit, Alton Road, Wrecclesham, Farnham, Surrey, GU10 5EL,</td>
<td>Earthline Limited</td>
<td>Surrey</td>
<td>Waverley</td>
<td>-</td>
<td>2,593,000</td>
<td>2,524,000</td>
</tr>
<tr>
<td>Betchworth Sand Quarry Landfill</td>
<td>Reigate Road Quarry, Reigate Road, Betchworth RH3 7HB</td>
<td>J & J Franks Ltd</td>
<td>Surrey</td>
<td>Reigate and Banstead</td>
<td>439,000</td>
<td>389,000</td>
<td>200,000</td>
</tr>
<tr>
<td>Homefield Landfill Site</td>
<td>Homefield Sandpit, Guildford Road, Farnham GU10 1PG</td>
<td>Chambers Runfold Plc</td>
<td>Surrey</td>
<td>Waverley</td>
<td>1,373,265</td>
<td>1,146,623</td>
<td>1,102,992</td>
</tr>
<tr>
<td>Laleham Quarry</td>
<td>Littleton Lane, Shepperton TW17 ONF</td>
<td>Brett Aggregates Limited</td>
<td>Surrey</td>
<td>Spelthorne</td>
<td>979,000</td>
<td>979,000</td>
<td>979,000</td>
</tr>
<tr>
<td>Mercers South</td>
<td>Nutfield</td>
<td></td>
<td>Surrey</td>
<td>Tandridge</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oxted Quarry Landfill</td>
<td>Chalk Pit Lane, Oxted RH8 0QW</td>
<td>Southern Gravel Limited</td>
<td>Surrey</td>
<td>Tandridge</td>
<td>2,386,475</td>
<td>2,381,692</td>
<td>2,238,824</td>
</tr>
<tr>
<td>Oxted Sandpit</td>
<td>Barrow Green Road</td>
<td></td>
<td>Surrey</td>
<td>Tandridge</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>stanwell III Landfill</td>
<td>Staines TW19 7XT</td>
<td>Cappagh Public Works Ltd</td>
<td>Surrey</td>
<td>Spelthorne</td>
<td>113,439</td>
<td>101,154</td>
<td>101,154</td>
</tr>
<tr>
<td>Facility name</td>
<td>Facility address</td>
<td>Operator name</td>
<td>Former planning sub region</td>
<td>Local authority</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>--</td>
<td>----------------------------</td>
<td>-----------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Stock Farm Stone Quarry</td>
<td>Hyde Lane, Farnham GU10 2LP</td>
<td>TJ Landfill</td>
<td>Surrey</td>
<td>Waverley</td>
<td>33,800</td>
<td>33,800</td>
<td>22,025</td>
</tr>
<tr>
<td>Boxgrove Landfill</td>
<td>Tinwood Lane, Earnham, Chichester, West Sussex, PO18 0NB</td>
<td>Inert Waste Recycling Limited</td>
<td>West Sussex</td>
<td>Chichester</td>
<td>640,000</td>
<td>417,078</td>
<td>417,078</td>
</tr>
<tr>
<td>Pendean Landfill</td>
<td>Oaklands Lane, Midhurst GU29 0ER</td>
<td>Cemex UK Materials Limited</td>
<td>West Sussex</td>
<td>Chichester</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rudgwick Landfill Site</td>
<td>Rudgwick Brickworks, Lynwick Street, Rudgwick, West Sussex, RH12 3DH</td>
<td>Restoration to Agriculture Ltd</td>
<td>West Sussex</td>
<td>Horsham</td>
<td>580,071</td>
<td>270,732</td>
<td>246,000</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,437,566</td>
<td>2,626,233</td>
<td>2,646,064</td>
</tr>
</tbody>
</table>
Appendix D – Examples of criteria based policies

Example 1: Policy WMP 8b of the East Sussex Waste and Minerals Local Plan (February 2013)

Deposit of Inert Waste on Land for Beneficial Uses

Proposals for the deposit of only inert waste on land will be permitted, subject to other policies of the Development Plan for the area, where relevant, where it is demonstrated that the proposal:

a. conforms with Policy WMP 8a (a, c, d); and

b. is an engineering operation such as that which forms part of a comprehensive scheme for restoration of suitable previously developed land or minerals sites; or

c. significantly enhances other development or its setting; or

d. would result in appropriate measurable improvement to the use or operation of agricultural and/or forestry land; and

e. the resulting final landform, landscape and afteruse enhances the environment and is sympathetic to the land uses, landscape, visual amenity and nature conservation interests of the site and the surrounding area including its landscape character; and the minimum volume of inert material is used to achieve necessary improvements; and

f. where appropriate, the proposal includes ancillary on-site facilities for the recovery of the waste which can be managed by methods further up the waste hierarchy.
Example 2: Policy CSW 12 of the Kent Minerals and Waste Local Plan (July 2016)

Inert Waste Management in Kent

Planning permission for the disposal of inert waste will be granted where:

1. it can be demonstrated that the waste cannot be managed in a more sustainable way
2. it is for the restoration of landfill sites and mineral workings
3. environmental benefits will result from the development, in particular the creation of priority habitat
4. that sufficient material is available to restore the site within agreed timescales
5. the proposal avoids causing unacceptable adverse impacts to the environment or communities

Example 3: Policy W8 of the West Sussex Waste Local Plan (July 2013)

Recovery Operations involving the Depositing of Inert Waste to Land

Proposals for recovery operations involving the depositing of inert waste to land (including for the continuation in duration, or the physical extension of, existing operations) will be permitted provided that:

(a) the proposal results in clear benefits for the site and, where possible, the wider area;
(b) the material to be used is only residual waste following recycling and/or recovery or it is a waste that cannot be recycled or treated;
(c) there is a genuine need to use the waste material as a substitute for a non-waste material that would otherwise have to be used;
(d) the material to be reused is suitable for its intended use;
(e) the amount of waste material to be used is no more than is necessary to deliver the benefits identified under (a);
(f) there would be no unacceptable impact on natural resources and other environmental constraints;
(g) the proposal accords with Policy W13 (Protected Landscapes);
(h) any important mineral reserves would not be sterilised; and
(i) restoration of the site to a high quality standard would take place in accordance with Policy W20.